
ReLiable: Offline Reinforcement Learning for Tactical Strategies
in Professional Basketball Games

Xiusi Chen
Department of Computer Science,

University of California, Los Angeles
Los Angeles, California, USA

xchen@cs.ucla.edu

Jyun-Yu Jiang∗
Amazon Search

Palo Alto, California, USA
jyunyu@amazon.com

Kun Jin
Department of Electrical and

Computer Engineering, University of
Michigan, Ann Arbor

Ann Arbor, Michigan, USA
kunj@umich.edu

Yichao Zhou
Department of Computer Science,

University of California, Los Angeles
Los Angeles, California, USA

yz@cs.ucla.edu

Mingyan Liu
Department of Electrical and

Computer Engineering, University of
Michigan, Ann Arbor

Ann Arbor, Michigan, USA
mingyan@umich.edu

P. Jeffrey Brantingham
Department of Anthropology,

University of California, Los Angeles
Los Angeles, California, USA

weiwang@cs.ucla.edu

Wei Wang
Department of Computer Science,

University of California, Los Angeles
Los Angeles, California, USA

weiwang@cs.ucla.edu

ABSTRACT

Professional basketball provides an intriguing example of a dynamic
spatio-temporal game that incorporates both hidden strategy poli-
cies and situational decision making. During a game, the coaches
and players are assumed to follow a general game plan, but players
are also forced to make spur-of-the-moment decisions based on
immediate conditions on the court. However, because it is challeng-
ing to process heterogeneous signals on the court and the space
of potential actions and outcomes is massive, it is hard for play-
ers to find an optimal strategy on the fly given a short amount
of time to observe conditions and take action. In this work, we
present ReLiable (ReinforcemEnt Learning In bAsketBaLl gamEs).
Specifically, we investigate the possibility of using reinforcement
learning (RL) to guide player decisions. We train an offline deep
Q-network (DQN) on historical National Basketball Association
(NBA) game data from 2015-2016. The data include play-by-play
and player movement sensor data. We apply our trained agent to
games that it has not seen. Our method is able to propose poten-
tially smarter tactical strategies, compared with replay gameplay
data, producing expected final game scores comparable to elite NBA
teams. Our approach can be useful for learning strategy policies
from other game-like domains characterized by competing groups
and sequential spatio-temporal event data.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9236-5/22/10.
https://doi.org/10.1145/3511808.3557105

CCS CONCEPTS

•Computingmethodologies→ Planning for deterministic ac-

tions; Search with partial observations; Partially-observable
Markov decision processes.

KEYWORDS

Reinforcement Learning, Policy Learning, Sports
ACM Reference Format:

Xiusi Chen, Jyun-Yu Jiang, Kun Jin, Yichao Zhou, Mingyan Liu, Jeffrey
Brantingham, Wei Wang. 2022. ReLiable: Offline Reinforcement Learning
for Tactical Strategies in Professional Basketball Games. In Proceedings of
the 31st ACM Int’l Conference on Information and Knowledge Management
(CIKM ’22), Oct. 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3511808.3557105

1 INTRODUCTION

An ultimate goal of both data mining and machine learning is to
help humans acquire knowledge from environments and make
decisions to achieve successful results. In most circumstances, one
needs to make sequential decisions to achieve some intermediate
goals, which consequently lead to some ultimate goals. However,
decision making is typically very hard in complex environments
since actors must constantly adapt to dynamic conditions and take
actions that they may only hope will yield the largest rewards.
Sequential decision making in dynamic environments has drawn
the attention of researchers from various areas, such as robotics [26,
41], healthcare [15, 53], and traffic and transportation studies [1, 16].

Professional basketball provides a good example of coaches and
players making split-second decisions in response to dynamic en-
vironmental factors. Relevant environmental factors include the
∗This work was done prior to joining Amazon.

3023

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3511808.3557105
https://doi.org/10.1145/3511808.3557105

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Xiusi Chen et al.

Shoot 3 points
Shoot 2 points

Pass
Dribble

Call Timeout…

positions of teammates
positions of opponents

shot clock
game clock

score difference …

Dynamic Environmental Factors:

Decisions to Make:

Shoot 3 points
Shoot 2 points

Pass
Dribble

Call Timeout…

Shoot 3 points
Shoot 2 points

Pass
Dribble

Call Timeout…

Rewards:
Score or not?

Figure 1: Basketball games are instances of sequential deci-

sion making in a dynamic environment. Players and coaches

have to make instant decisions that benefit them the best,

while external factors such as opponents, game points are

changing over time.

current positions of teammates and opponents, the shot clock and
game clock, and the score difference, all of which are constantly
changing. Furthermore, these factors are heterogeneous in nature
under most circumstances. To account for all the critical factors
to make a comprehensive decision, one has to first learn represen-
tations of these factors to harmonize this heterogeneity. These
conditions make the optimal sequential decisionmaking a very chal-
lenging task. At the elite level, small differences in performance can
lead to resounding success or abject failure [18]. Recognizing this,
basketball teams usually hire professional staff, including video
coordinators and data analysts, who study replay data with the
purpose of improving strategic and tactical decision making [40].
However, it is challenging to precisely evaluate the long-term

impact of sequential atomic actions on the final game outcomes.
For instance, even if a team scores at the end of a given possession,
it is not necessarily true that every sequential action taken during
that possession was optimal. Better strategies may in fact result in
higher scores overall. Similarly, if a team does not score, it may be
wrong to conclude that all of the decisions taken during possession
were bad. “Bad luck” (i.e., stochasticity) may be to blame, instead
of deployed tactics. More realistically, any given set of sequential
actions taken may be a mix of a few optimal and many sub-optimal
decisions, each made on the fly. It is challenging for players to pay
perfect attention to all of the environmental signals that would be
essential for making perfectly optimal decisions. We therefore ex-
plore whether machine learning techniques used to digest massive
environmental signals can be used to learn game strategies and
potentially help coaches and players make more optimal decisions.

Past studies of basketball [35, 46, 47, 52] incorporate recurrent
neural networks to process player-tracking data. The goal is to
recognize offensive tactics and to predict the movement of players.
These approaches cannot discover optimal sequences of decisions
because they lack labeled interactions between the learning agent
and the environment. Some recent efforts [38, 46, 51] deploy RL to
leverage the game/possession results as rewards to give positive
or negative feedback for the strategy learning process. However,
these approaches assume the presence of an online environment
that can be interacted with to collect a real-time reward, which is
often unrealistic since it would be impossible to find an opponent
to specifically help one team improve their strategies.

To tackle the above challenges, we formulate each basketball
game as a Partially Observable Markov Decision Process (POMDP)
where the system dynamics are determined by a Markov Decision
Process (MDP), but the agent can only observe imperfect signals
indicating the likelihood of the system state. In an MDP, actions
are determined only by the current state of the system. A POMDP
relaxes this Markov constraint in that the best action under the
current state can be dependent on historical states. To encode the
observation of states, we utilize convolutional neural networks and
Transformer [50] to incorporate a continuous sliding window of
game state snapshots. The convolutional layers convert the visual
signals into low-dimensional vectors, and the Transformer encoder
integrates all the snapshots into a vector of hidden state, where all
the recent observations are taken into account as well.

To digest the heterogeneous data, we present a well designed
pipeline that does multi-modal data representation learning when
the offline RL objective is achieved. This capability of incorporating
multi-modal signals equips our model with the power of making
comprehensive decisions accounting for as many factors as possible.

Another characteristic of our framework is that we train our
model under a fully offline setting, where no direct interaction
with a real-world environment is available. We must take full ad-
vantage of the replay data of previous games. We apply a highly
robust mechanism, double Q-learning [49], to improve the Q-value
estimation under this offline setting.

To summarize, our contributions are four-fold: (1) We formulate
the problem of learning tactics in basketball games as one of solv-
ing a POMDP; (2) We propose a framework, ReLiable, to apply
offline reinforcement learning techniques to solve the POMDP; (3)
A representation learning pipeline facilitates ingesting multi-modal
data and models at fine granularity; (4) Extensive experiments to
showcase that ReLiable can effectively learn strategic decisions
from replay data without interacting with a real environment.

2 RELATEDWORK

Applications of Reinforcement Learning. Reinforcement learn-
ing is a paradigm that implements learning-based control. Rein-
forcement learning algorithms have had remarkable success in
various application domains, such as robotics [24], self-driving
cars [5], industrial control [14], financial markets [36], healthcare
[53], news recommendation [54], gaming [44], and advertising [22].
However, many applications of reinforcement learning rely on an
online environment that supports interactions. This is a luxury in
many settings either because it is costly, unethical, or dangerous to
collect data online. As such, it is desirable to learn effective behavior
strategies while using only previously generated data. Offline rein-
forcement learning has been proposed to fully exploit previously
collected data without requiring interaction with the environment
[2, 11, 13, 28, 32]. Applications of offline reinforcement learning
have emerged in domains such as dialogue systems [19], robotic
manipulation behaviors [25], and navigation [23].
Sports & Machine Learning. In the field of sports analytics, ma-
chine learning and AI has been harnessed only recently for under-
standing and advising human decisions [48]. Robberechts et al. [42]
introduced an in-game win probability model for soccer. Merhej
[37] used deep learning techniques to define a novel metric that
values defensive actions. Luo et al. [34] proposed a player ranking

3024

ReLiable: Offline Reinforcement Learning for Tactical Strategies in Professional Basketball Games CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

method that combines inverse RL and Q-learning. Decroos et al.
[10] proposed an approach to find patterns in professional soccer
as tactics and went on to propose a framework to evaluate any
type of player action based on its impact on the game outcome [9].
Sun et al. [45] addressed the trade-off between accuracy and trans-
parency for deep learning applied to sports analytics by proposing
a new technique called mimic learning. [43] showcased the utility
of statistical analysis (i.e., expected goal value, strategy-plots and
passing quality measures) to predict future performance. In [3], a
probabilistic graphical model was proposed disentangle the sports
teams’ luck and skills, and found that luck is as important as skills.

Although there may be no optimal way of playing basketball,
there has been research on optimizing certain player decisions
within the game. Wang et al. [51] discussed how to leverage rein-
forcement learning to make better decisions on whether (and when)
the defensive team should “double team”, a special strategy in which
two players closely guard one player from the opposite team to
neutralize that offensive player. Neiman et al. [38] focused on the
effect of recent field goal attempts on the rate of subsequent shot
attempts using a one-state Q-learning model, stating such learning
is not guaranteed to improve performance, unless a comprehensive
statistical model of the dynamics of the game is present. Liu et
al. [33] developed a method that utilized motion capture data to
learn robust basketball dribbling moves. By training on both loco-
motion control and arm control, they were able to achieve robust
dribbling under a variety of scenarios. Jia et al. [20, 21] developed a
basketball gaming platform called Fever Basketball that let develop-
ers test their reinforcement learning-based algorithms under their
specific video game setting. Based on Fever Basketball, Tang et al.
further proposed a reinforcement learning method to produce a
defensive strategy. These works rely on homogeneous data, and
applies ML techniques to conduct analysis on certain aspects of
the game. However, they do not focus on utilizing comprehensive
multi-modal game information to learn effective team-level offen-
sive tactics while only game replay data is available during training.
Imitation learning is another machine learning paradigm that has
applications in sports. It implements learning-based control, but
requires human expert demonstrations. Le et al. [30, 31] applied
imitation learning to explore decision improvement by comparing
the specific opponent and "league average", one team might be able
to make subtle adjustments to their strategy. Successor studies in-
clude extending the action space into a hierarchy [29]. In contrast to
reinforcement learning, imitation learning presumes that training
examples represent "good" behavior, which is usually impractical.

3 PRELIMINARIES

In this section, we introduce key concepts in reinforement learning
(RL) and our notation. We then formally define the problem of
reinforcement learning of tactical strategies in basketball games.
3.1 Notation and background

In the RL setting, we usually suppose that an agent repeatedly inter-
acts with the environment. For an agent, the environment provides
feedback, such as the next state of the environment and the instant
reward for actions taken. This interaction process can be naturally
modeled as a Markov Decision Process (MDP) [6]. An MDP
can be represented as a tuple M = (S,A,𝑇 , 𝑟, 𝛾), where S repre-
sents the set of possible states 𝑠 ∈ S, A is the set of all possible

actions 𝑎 ∈ A that the agent can take. 𝑇 defines a state transi-
tion mechanism in response to environmental dynamics, which is
usually expressed as a conditional probability distribution. Specifi-
cally, 𝑇 (s𝑡+1 | s𝑡 , a𝑡). 𝑟 : S × A → R defines the reward function
based on a given state and the action chosen by the agent. Finally,
𝛾 ∈ [0, 1) is a discounting factor associated with the learning pro-
cess that balances between the reward in the current state and the
reward in future states.

In a standard setting, the agent (1) starts with an observed state 𝑠𝑡 ,
(2) picks some action 𝑎𝑡 ∈ A with the potential of maximizing the
accumulative reward, (3) enters a new state 𝑠𝑡+1, and (4) perceives
an instantaneous reward 𝑟𝑡 . This process repeats until a terminal
state is reached.

The MDP process gives us a good picture of how AI researchers
model relations between intelligent agents and the environment.
However, it sometimes becomes hard for the agent to fully ob-
serve the current state from the environment, so a new paradigm
is needed to generalize the regular MDP. To this end, we focus
on Partially Observable Markov Decision Process (POMDP)

models [4].
A POMDP is defined as a tupleM = (S,A,O,𝑇 , 𝐸, 𝑟, 𝛾) where

S,A,𝑇 , 𝑟 , and 𝛾 share the same definitions as in the MDP. O is the
set of observations, where each observation 𝑜 ∈ O is generated by
both the underlying unobservable state and the emission function
𝐸 (o𝑡 | s𝑡).

To learn a POMDP, most existing studies focus on online re-
inforcement learning, and collect rewards and next states from
the environment in an on-the-fly manner. The final goal of on-
line reinforcement learning is to learn a policy 𝜋 that maximizes
the cumulative reward 𝐽 (𝜋) = E𝜏∼𝑝𝜋 (𝜏)

[∑𝐻
𝑡=0 𝛾

𝑡𝑟 (s𝑡 , a𝑡)
]
, where

the policy 𝜋 is defined by a distribution over actions conditioned
on states 𝜋 (a𝑡 | s𝑡) in the MDP setting, or a distribution over ac-
tions conditioned on observations 𝜋 (a𝑡 | o𝑡) in the POMDP setting.
Fundamentally, in MDPs our goal is to find a map from states to

actions, whereas in POMDPs our goal is to find a map from prob-

ability distributions over states to actions.
Notice that the reinforcement learning objective 𝐽 (𝜋) is an ex-

pectation under a distribution. To fully illustrate this distribution,
we have to define a trajectory. The trajectory sequence, or episode
is a sequence of states and actions 𝜏 = (s0, a0, . . . , s𝐻 , a𝐻). The
probability of a trajectory given an MDP and a policy 𝜋 is given by
𝑝𝜋 (𝜏) =

∏𝐻
𝑡=0 𝜋 (a𝑡 | s𝑡)𝑇 (s𝑡+1 | s𝑡 , a𝑡).

Online reinforcement learning implicitly assumes that the agent
has the luxury of directly interacting with the environment. How-
ever, this assumption is sometimes impractical. For example, col-
lecting “live” online data may be very expensive, unethical, or dan-
gerous when training an autonomous driving vehicle.

In this paper, we propose the offline reinforcement learning
paradigm that operationalizes RL without exploration. It can be
regarded as the data-driven version of online RL. The ultimate goal
of offline RL is still maximizing the cumulative reward 𝐽 (𝜋), but
without the ability to interact with the environment or to collect
transitions among states by the policy. In other words, the learning
algorithm has to fully exploit the episodes given in a static dataset

D =

{(
s𝑖𝑡 , a

𝑖
𝑡 , s

𝑖
𝑡+1, 𝑟

𝑖
𝑡

)}
(1)

3025

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Xiusi Chen et al.

Frame Labeling Learn optimal strategy with offline RL

learn on
 Raw game

replay data

Team game playing

Next State

Action

Reward

Dribble Pass Shoot

Game Snapshots Player Stats

Play-by-Play, Scores, Game Clock

Current State

t

t+1

evaluate on

Replay
data

M
ulti-m

odal State Representation Learning

Figure 2: Overview framework of ReLiable. The overall pipeline can be split into two major components: Frame Labeling and

Offline RL. During Frame Labeling, we annotate each frame with an action. We also append flat features such as game clock,

shot clock and player stats to the snapshot to form the episodic data that can be fed into our model. During Offline RL, our

model takes both visual features and flat features as input, learns the representation of the multi-modal input, and conducts

training and inference.

to produce the best possible policy. Suppose that the episodes in D
are generated by some underlying policy 𝜋𝛽 , the actions are then
subject to a ∼ 𝜋𝛽 (a | s).

3.2 Problem Formulation

The input of ReLiable is a collection of basketball game logsD𝑟𝑎𝑤 .
The game logs consist of three parts as follows.
Player movement tracking data. The tracking data D𝑚𝑜𝑣𝑒 are
static game snapshots that include the positions of all on-court
players and the ball at a frequency of 25 frames per second during
a game. The progress of any game can be visualized and restored
based on the sequence of snapshots.
Play-by-Play data. D𝑝𝑏𝑝 provides a transcript of the game in a
format of possessions. It contains 1) the time of the possession,
2) the player who initiated the possession, 3) the outcome of the
possession, e.g., how many points are scored, and 4) some other
unique identifiers we use to classify the type of possession.
Player stats data. D𝑠𝑡𝑎𝑡 usually includes player attributes (e.g.,
height, weight, wingspan, age) and past performance (e.g., min-
utes per game, points per game, field goal percentage, and 3-point
percentage).

For learning purposes, we split D𝑟𝑎𝑤 into D𝑡𝑟𝑎𝑖𝑛 and D𝑡𝑒𝑠𝑡 as
the training set and testing set by the times of gameplays. Formally,
we define our task as follows:

Given a collection of game logsD𝑟𝑎𝑤 = D𝑚𝑜𝑣𝑒 ∪D𝑝𝑏𝑝 ∪D𝑠𝑡𝑎𝑡

and an action set A, where each 𝑎 ∈ A is well defined by the
discriminative rules on D𝑟𝑎𝑤 , the task is to assign an appropriate
action label 𝑎 to every frame in D𝑚𝑜𝑣𝑒 . In other words, we aim at
producing a policy 𝜋𝜃 (a | o) parameterized by 𝜃 to output the best
action based on the observation related to each frame in D𝑚𝑜𝑣𝑒 .
4 METHODOLOGY

Framework Overview Figure 2 illustrates the pipeline of our
framework. The raw game replay data is generated by recording

the actual games during the 2015-2016 NBA regular season. Each
team plays their games according to their policies 𝜋𝛽 unknown to
our model. The raw game data is multi-modal. Specifically, a game is
represented by a sequence of snapshots captured at a high frequency
(e.g., 25 frames per second), in which at a given time 𝑡 , the snapshot
contains an image with all player positions and ball position, as
well as a set of auxiliary information, such as instant scores, player
percentage, shot clock, and game clock, at time 𝑡 . From the raw
game replay data, we extract the game state representation, the
action, and the reward on a frame basis to form the replay data
D =

{(
𝑠𝑖𝑡 , a

𝑖
𝑡 , 𝑠

𝑖
𝑡+1, 𝑟

𝑖
𝑡

)}
. Once we derive the replay data D, we feed

it into ReLiable to infer effective policy 𝜋𝜃 . Note that during the
training process, there is no interaction with any environment. To
evaluate the performance of 𝜋𝜃 , we conduct off-policy evaluation
on the test set using both action copy and importance sampling.
Details on the tasks are discussed in the experiments section.

In summary, our framework employs a dataset D collected by
unknown behavior policy 𝜋𝛽 , which can be roughly understood
as the “average” policy of all NBA teams. The dataset is collected
once and for all, and is not altered during training. The training
process is fully dependent on the training set Dtrain , so it does not
interact with environment at all. Once fully trained, we expect 𝜋𝜃
to generalize well on Dtest .

4.1 Making Tactical Decisions on-the-fly with

RL framework

4.1.1 Game State Representation. The state space for a professional
basketball game is extremely large, though presumably not infi-
nite. We want to account for as many game states as possible by
considering a continuous state representation that encapsulates
player trajectories, player heights, weights, shooting abilities, the
shot clock, game clock and current scores for each team. As input
to our network, we use both images and flat features.

3026

ReLiable: Offline Reinforcement Learning for Tactical Strategies in Professional Basketball Games CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Our image representation includes three types of channels: i)
one court channel encoding the region number of each pixel, ii) 11
trajectory channels (for the 10 players and the ball), and iii) five
offensive player shooting percentage channels, each of size 47×50
in the pixel space (i.e., the half court discretized by square feet).
When estimating shooting percentages, we use data up to, but not
including the current game. This is necessary to respect the causal
ordering of events. The result is a 17 channel image. The channels
are ordered across images by team and position within a team so
that image semantics across examples can be preserved.

To infer the best action at any moment, we see beyond the game
snapshot of the current moment. We encode the snapshot sequence
of past 3 seconds and take advantage of Transformers which has
been proven effective on modeling sequential data, and feed the
representation into our model.

Apart from the movement data, other game and player informa-
tion is also crucial for the agent to make the best possible decisions.
Thus, the state representation also incorporates some flat features
like the game clock, shot clock, and player historical shooting per-
centage. For continuous features, we normalize them into range
[0, 1], while for categorical features, we use one-hot encoding. Note
that for scores, we treat them as categorical features as subtle score
difference may have a huge impact on decision making.

Figure 3 illustrates the model architecture of ReLiable. Convo-
lutional networks and Transformer are employed to encode the
movement data which are essentially image sequences. Convo-
lutional networks are known for capturing spatial dependencies
while Transformers are known for capturing temporal dependen-
cies. Combining them together empowers ReLiable to extract pat-
terns in the features instead of the randomness. To comprehensively
incorporate as much game information as we can, the flat features
are concatenated with visual features. This concatenation goes
through a fully connected module (FC Net) and derives our final
state representation.

By leveraging Transformer to capture the temporal dependencies,
we are essentially treating the basketball games as a higher-order
Markov chains (the order being the sliding window size). Strictly
speaking, we do not exactly follow the implementation as a POMDP
since typical POMDP uses the belief state to capture everything,
but higher-order Markov decision process can be used as a way to
tractably perform computation over the PODMP. ReLiable does
not compute the posterior over all the past observations, instead
we keep a fixed sliding window of observations to approximate the
POMDP. From the basketball sense, this also makes sense. When
players make decisions on-the-fly, it is the recent game process that
matters the most, rather than the whole game procedure.

4.1.2 Action Space Labeling. Our pipeline takes the player move-
ment data as input. To fulfill the POMDP requirement, we need to
define the action space and label the player movement data with ac-
tions. This paper focuses on the offensive perspective, and therefore
in our evaluation, four actions are defined on two sets of experi-
ments: (1) Shooting 3-points. Attempting a 3-point shot. If the ball
goes in, the offensive team is rewarded 3 points. (2) Dribble. The
on-ball player keeps dribbling the ball. (3) Pass. The on-ball player
passes the ball to one of his teammates. (4) Shoot. The on-ball
player shoots the ball from his current position on the floor.

ConvBlock

ConvBlock

ConvBlock

Dropout

Dropout

ConvNet:

FC Block

FC Block

FC Block

Dropout

Dropout

Dropout

FC Net:

Convolution

ReLU + BatchNorm

Pooling

ConvBlock:

FC Layer

ReLU + BatchNorm

FC Block:

ConvNet

FC Net

Advantage

Value

Q

Movement Data Flat Features

6-Layer
Transformers

FC Block

Output

Value & Adv Networks:

Multi-modal State Representation Learning Offline Q-Learning

Visual
Features

Feature
Concatenation

Figure 3: Model architecture of ReLiable. Since we formu-

late our learning problem as solving a POMDP, past game

observations can be incorporated as inputs to predict the best

next action. We use convolutional blocks to encode the im-

ages into visual features, and exploit Transformer to encode

the sequence of game observations. Visual features and flat

features are concatenated to form the state representation.

We annotate each and every frame of the raw movement replay
data with one of these actions to serve as the ground truth for
training and validation. To label a given frame, we inspect a sliding
window of snapshots and leverage some simple rules to determine
the exact action for each specific frame. The rules that we apply to
label actions out of the raw game replay data are as follows. The
output of frame labeling tags each frame in the raw data with an
action that is being conducted in the frame.
• First, all actions in our action set are highly dependent on the
player that currently has possession of the ball. So, our labeling
process starts with calculating the distance between the ball and
each of the other offensive players.

• We assign the offensive player closest to the ball to be the current
ball handler.

• To determine the action of dribbling, we look at a sliding window
with a span of 2 seconds. If, during the time window, the ball
handler has not changed, then we label all the frames covered by
the window as "dribble".

• By contrast, if the ball handler has changed, during this time
span, then if the distance between sequential ball handlers is
larger than 20 centimeters, we label the frames as "pass".

• Finally, to precisely extract “shooting” frames, we combine the
information in the play-by-play data and player movement data.
The play-by-play data provides us with all the shooting attempts,
so we only have to look at the frames immediately before the
attempt. After ruling out those frames determined as "dribble" or
"pass", we consider a 5-second sliding window. We label all the
frames involved as "shoot" once the height of the ball (relative
to the floor) exceeds 10 feet (which is the height of the rim), and
the distance of the ball to the rim decreases to near 0.

4.1.3 Reward. The ultimate goal of a basketball team is to score
more points than their opponent, thereby winning the game. From
the offensive perspective, winning the game is consistent with

3027

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Xiusi Chen et al.

maximizing the total points scored during a game, which is presum-
ably achieved if a team scores as many points as possible in each
and every possession. Therefore, we mainly focus on designing a
good reward function based on the points obtained in a possession.
According to the basketball rules, points obtained in a single pos-
session can be one of the values in the set: 𝑠𝑐𝑜𝑟𝑒 ∈ {0, 1, 2, 3, 4, 5}.

Although obtained points are a good indicator to guide the learn-
ing process, we observe that simply rewarding the shooting decision
by whether it scores can be misleading, since “bad shots” might
nevertheless result in a basket, while “good shots” might miss. A
common case to consider is as follows: When it is approaching the
end of a game and the score difference is marginal, the trailing team
often takes their chances by attempting so-called “low percentage”
shots. Sometimes a half-court “buzzer beater” wins the game, but
mostly they do not. If we only consider attempts that actually lead
to scoring, we might miss these seemingly nonsensical attempts
that can potentially help to win the game.

To address this issue, we associate each shot attempt with two
regularization terms. First, within each possession, as the shot clock
goes to 0, we reward any shot attempt with a value that is a linear
function of the shot clock, even if that shot misses. Second, when
the game is tight at the end of the fourth quarter, we reward shots
that might not seem reasonable, but have the potential to yield a
win. Specifically,

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑠𝑐𝑜𝑟𝑒+(24.0−𝑠ℎ𝑜𝑡_𝑐𝑙𝑜𝑐𝑘)/24.0+𝑔𝑎𝑚𝑒_𝑐𝑙𝑜𝑐𝑘∗𝑁𝐵(5, 2/3)

where 𝑠𝑐𝑜𝑟𝑒 denotes the points scored by the offensive team. The
second term is the shot clock-based compensation. When a shot
happens as the 24 seconds run out, we compensate 1 point for the
decision since taking a shot is the only correct action at this point.
The third term compensates for potential “buzzer beater” shots.
𝑁𝐵 denotes the negative binomial distribution with parameters
𝑟 = 5, 𝑝 = 2/3. This distribution has a probability mass function
with a peak at 𝑘 = 6 where 𝑘 is the support. This means that we em-
pirically assume teams trailing by 6 points are most likely to try the
"nonsense" shot attempts. Since the compensation should be a joint
distribution of the game clock and score difference, we weigh the
score difference with the game clock, so that we compensate more
when it is closer to the end of a tight game. We further show anal-
ysis that motivates our reward function. During the development
of ReLiable, we find there are cases where players seem to make
“unreasonable” decisions, e.g., rushing shots or make confusing
passes. We further investigated on these “unreasonable” decisions,
and find that these cases center around following situations: i) the
24-second shot clock is running out; ii) game clock is running out
and the score difference is small. Figure 4 showcases distribution of
3-point attempts over game clock, shotclock and score difference. In
Figure 4a, we can see rapid increases in number of 3-point attempts
near end of the quarters (every 12 minutes). In Figure 4b, there are
quite a lot 3-point attempts made at the end of a possession. In Fig-
ure 4c, we can learn that in the case of small score difference, both
the leading team and the trailing team tend to attempt 3-pointers
to enlarge the advantage or catch up the score. Observing these
distributions, we imagine many of these “rushing shots” are in fact
wise decision, since these shots can occasionally turn into “buzzer
beaters”, making the trailing team eliminate the disadvantage to
get an overtime. As a result, merely learning from the outcome of

Table 1: NBA 2015 - 16 Regular Season Game Stats

Games # Minutes # Plays # Frames
636 30, 528 321, 742 45, 792, 000

these possessions might not reflect the reasonability of these right
decisions. To compensate these right decisions, we add the two
regularization terms in the reward function.

4.1.4 Training Process. Figure 3 illustrates the architecture of the
training component of ReLiable. We build ReLiable based on the
double Q network. We use the double Q network since it has been
proven effective in learning defensive strategies [51]. It is flexible
to substitute the learning module with other offline RL algorithms
such as BCQ [13], REM [2], or CQL [28]. Since we formulate our
learning problem as solving a POMDP, previous game observations
can be incorporated as inputs to predict the best next action. We use
Transformers to encode a sequence of game observation snapshots
since Transformers are known for capturing temporal dependencies.
We use Convolutional networks to encode image features since we
would like to capture the patterns in the snapshot images instead
of the randomness. Since the backbone of our framework is a deep
Q network, the learning process essentially trains a state-action
value (Q-value) estimator that represents a mapping 𝑠 → 𝑄𝜋 (𝑠, 𝑎)
for all actions 𝑎 ∈ A. To derive the state representation, we use the
convolutional neural network to encode the visual features such as
movement snapshots.

Feed forward neural network is used as the function approxima-
tor. The function directly approximate the Q-values for each action
𝑎𝑡 given a state 𝑠𝑡 at timestamp 𝑡 . Since the action space labeling
phase has transformed the raw game data into the episodic training
setD = {D𝑖 }𝑁𝑖=1 where eachD𝑖 = (𝑠𝑖1, 𝑎

𝑖
1, 𝑟

𝑖
1, . . . , 𝑠

𝑖
𝑇𝑖−1, 𝑎

𝑖
𝑇𝑖−1, 𝑟

𝑖
𝑇𝑖−1, 𝑠

𝑖
𝑇𝑖
)

is called an episode which contains the sequence of states, actions,
rewards corresponding to one possession in the game. Our DQN
learns its parameters by minimizing the sum of temporal difference
(TD) error of all the 𝑁 episodes in the training set:

L =

𝑁∑︁
𝑖=1

𝑇𝑖−1∑︁
𝑡=1

[
𝑄𝜋∗ (

𝑠𝑖𝑡 , 𝑎
𝑖
𝑡

)
−

(
𝑟 𝑖𝑡 +𝑉 𝜋∗ (

𝑠𝑖𝑡+1
))]2

We represent the derived policy as 𝜋∗, and the estimated 𝑄𝜋∗
and

𝑉 𝜋∗
represent the Q-value and V-value in general reinforcement

learning settings. As a result, our derived policy can be expressed
in the following way:

𝜋∗ (𝑎 | 𝑠𝑡) =
{

1, if a = argmax
𝑎∈A𝑡

𝑄𝜋∗ (𝑠𝑡 , 𝑎)

0, otherwise
𝑉 𝜋∗ (𝑠𝑡+1) = max𝑎∈A𝑡+1 𝑄

𝜋∗ (𝑠𝑡+1, 𝑎) .

5 EXPERIMENTS

In this section, we present our experimental results in detail. We
will first give a thorough description of the data set, then discuss
the experimental settings including the input and output of our
model and evaluation metrics.
5.1 Dataset

We acquired the data set from a publicly accessible repository 1. The
input data of our model is made up of three parts: (1) Play-by-Play:
1https://github.com/rajshah4/BasketballData/tree/master/2016.NBA.Raw.SportVU.
Game.Logs

3028

https://github.com/rajshah4/BasketballData/tree/master/2016.NBA.Raw.SportVU.Game.Logs
https://github.com/rajshah4/BasketballData/tree/master/2016.NBA.Raw.SportVU.Game.Logs

ReLiable: Offline Reinforcement Learning for Tactical Strategies in Professional Basketball Games CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

(a) The correlation between 3-point at-

tempts and game clock.

(b) The correlation between 3-point at-

tempts and shot clock.

(c) The correlation between 3-point at-

tempts and score difference. Negative

score difference indicates trailing team

behavior.

Figure 4: (a, b, c): The three-point attempts demonstrate some patterns with respect to different factors. Inspired by these

patterns, we decide to add regularization terms to the reward function.

Information at the possession level including how the possession
ended (jump shot, lay up, foul, etc.), how many points were earned
for the offensive team, from which spot the ball shot shot, and the
player that shot the ball, etc. (2) Player movement sensor data:
Court snapshots during games including the positions of players
and the ball in Cartesian coordinates. The elapsed time between
consecutive frames is 0.04 second. The statistics are listed in Table
1. (3) Player stats: The player position and shooting percentage.

5.2 Experimental setting

In general, evaluation of offline reinforcement learning is challeng-
ing because we cannot interact with the online environment to
collect rewards. Fully exploiting the existing replay data is the only
way to perform model validation. To thoroughly examine whether
our framework can learn effective strategies, we design two evalu-
ation protocols including action copy and off-policy evaluation via
importance sampling.

In the action copy experiment set, we first focus on the challenge
of deciding when to take a 3-point shot. We wish to determine if
our model can make good decisions in edge cases such as when to
attempt a “buzzer beater” to win the game. Later on, we extend the
action space to make it more fine-grained, and investigate whether
our model can still choose wisely among dribble, pass and shoot.

In off-policy evaluation, we use importance sampling to evaluate
the expected return of our policy. By adding up all expected rewards
from each possession for a team, we are able to estimate the point
total for a team of agents following the learned strategy policies.

In both experiments, we split the training/testing data chrono-
logically: we use games in 2015 for training, totaling 480 games,
and the rest games (in 2016) as the test set, totaling 156 games.

5.3 Baseline Methods

We evaluate the performance of our method against the following
supervised and reinforcement learning frameworks:
• Logistic Regression [39] is a supervised classification method.
It takes flat features as input and computes the correlation be-
tween input and labels using a generalized linear function.

• CNN [27], short for convolutional neural network, is a standard
image signal encoder classification method.

• LSTM [17], short for Long Short-Term Memory, is a type of
Recurrent Neural Network. LSTM networks are well-suited to
classifying, processing and making predictions based on time
series data.

• GRU [8], short for Gated Recurrent Unit, is another type of Re-
current Neural Network. Compared to LSTM, GRU has a simpler
structure, thus achieving higher computational efficiency.

• Transformer [50] is a sequence-to-sequence model containing
an encoder and a decoder. Here, we only utilize the encoder part.
Transformer applies a multi-head self-attention mechanism as an
alternative to Recurrent Neural Network, enabling the parallel
computation and dramatically enhancing the model efficiency.

• Soft Actor-Critic (SAC) [12] is one of the state-of-the-art off-
policy actor-critic algorithm. Most RL-based algorithms espe-
cially on-policy ones require the interactive environment which
is absent in the offline setting. As a result, we pick SAC as our
main competitor and adapt it to our offline setting. It expects to
learn a policy that acts as randomly as possible while it is still
able to succeed at the task. We evaluate SAC under both MDP
and POMDP settings.

5.4 Performance Comparison

5.4.1 Action copy. In action copy, we test how likely our model is
to behave like the replay data. Different from imitation learning,
offline RL does not assume the replay data to be optimal, and may
have to handle highly suboptimal data. Offline RL is expected to
derive the best policy possible given the data, which means the
hope of out-performing the demonstration data.

Simply involving all the trajectories to test similarity seems
straightforward, but turns out to be unreasonable since our test data
is the raw replay data that includes large numbers of suboptimal
plays. As an alternative, we filter out possessions that do not result
in scores and focus on how similar our policy behaves to the replay
data in the possessions that actually lead to scoring.
Evaluation Metrics. In the 3-point attempts set, whether or not
to shoot the ball is a binary decision. We simply use the F1 score as
the evaluation metric. In the dribble-pass-shoot set, we use Micro
and Macro F1 scores as evaluation metrics.

Table 2 demonstrates the experimental results on the set of 3-
point attempts. At any time of the game, every model outputs a
result whether or not the better action is to try a 3-point shot at that
moment. From the result, we can see that for the binary decision,
ReLiable performs better than all the comparative methods. In the
set of dribble-pass-shoot, we evaluate similarly as multi-class clas-
sification. The results in Table 3 demonstrate a similar pattern as
in the previous set, where ReLiable outperforms all the baselines.
Combining the two sets, we can see that by considering long-term

3029

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Xiusi Chen et al.

Table 2: F1 scores of compared al-

gorithms on 3-point attempts.

Model F1 score
Logistic Regression 56.28%

CNN 67.10%
LSTM 68.32%
GRU 67.94%

Transformer 70.43%
SAC with MDP 75.27%

SAC with POMDP 78.17%
ReLiable with MDP 76.24%

ReLiable 81.01%

Table 3: {Micro, Macro} F1 scores of compared

algorithms on {Dribble, Pass, Shoot}.

Model Micro F1 Macro F1
Logistic Regression 35.17% 27.32%

CNN 42.89% 34.71%
LSTM 45.22% 34.75%
GRU 45.74% 34.14%

Transformer 51.20% 37.48%
SAC with MDP 57.36% 40.43%

SAC with POMDP 70.27% 64.81%
ReLiable with MDP 60.24% 44.09%

ReLiable 72.95% 66.90%

Table 4: Estimated value of 𝐽 (𝜋𝜃) on test

set.

Model 𝐽 (𝜋𝜃)
SAC with MDP 81.36

ReLiable with MDP 94.89
SAC with POMDP (LSTM) 98.42

Seasonal average 102.7
SAC with POMDP (Transformer) 105.75

ReLiable (LSTM) 100.28
ReLiable (Transformer) 108.16

rewards, reinforcement learning based methods perform better
than supervised learning based methods. In particular, ReLiable
makes decisions that are in alignment with those in the successful
possessions, and outperforms policy gradient consistently. We at-
tribute this overtake to the double Q-learning architecture, which
has demonstrated its superiority in offline reinforcement learning
settings. We can also observe that formulating the task as a POMDP
by using the Transformer encoder to capture dependencies on re-
cent game snapshots outperforms merely looking at the snapshot
of the current timestamp.
5.4.2 Off-Policy Evaluation via Importance Sampling. In the offline
RL setting, we have to estimate the cumulative reward 𝐽 (𝜋𝜃) using
only the trajectories generated from the unknown underlying policy
𝜋𝛽 (𝜏). This idea is also known as off-policy evaluation. In principle,
once we can estimate 𝐽 (𝜋𝜃), we can select the policy with the
highest cumulative reward. Specifically, we derive an unbiased
estimator of 𝐽 (𝜋𝜃) that is dependent on the replay data trajectories:

𝐽 (𝜋𝜃) = E𝜏∼𝜋𝛽 (𝜏)

[
𝜋𝜃 (𝜏)
𝜋𝛽 (𝜏)

𝐻∑︁
𝑡=0

𝛾𝑡𝑟 (s, a)
]

= E𝜏∼𝜋𝛽 (𝜏)

[(
𝐻∏
𝑡=0

𝜋𝜃 (a𝑡 | s𝑡)
𝜋𝛽 (a𝑡 | s𝑡)

)
𝐻∑︁
𝑡=0

𝛾𝑡𝑟 (s, a)
]
≈

𝑛∑︁
𝑖=1

𝑤𝑖
𝐻

𝐻∑︁
𝑡=0

𝛾𝑡𝑟 𝑖𝑡

Theweight coefficient𝑤𝑖
𝑡 is expressed as𝑤

𝑖
𝑡 =

1
𝑛

∏𝑡
𝑡 ′=0

𝜋𝜃

(
a𝑖
𝑡 ′ |s

𝑖
𝑡 ′

)
𝜋𝛽

(
a𝑖
𝑡 ′ |s

𝑖
𝑡 ′

)
and

{(
s𝑖0, a

𝑖
0, 𝑟

𝑖
0, s

𝑖
1, . . .

)}𝑛
𝑖=1

corresponds to 𝑛 trajectories sampled
from the underlying unknown tactical strategies from the NBA
teams. In our case, these trajectories are game snapshot series from
the replay data.

The off-policy method is essentially to see how similar our policy
performs to the plays in the test set, with an emphasis on the plays
that actually received very high ewards. Essentially, 𝐽 (𝜋𝜃) is a sum
of the discounted cumulative reward weighted by the rewards of
each step, so if a step in the data actually got high rewards, then we
pay more attention to these situations. In order for the weighted
sum to be large, we should increase the probability of our policy
𝜋𝜃 taking the action that leads to a high reward in the trajectory
generated from the unknown policy 𝜋𝛽 .

Table 4 lists the performance of off-policy evaluation. Since off-
policy evaluation is only applicable to RL-based methods, we test
all relevant methods on all games in the test set, derive the average
scores over the games, and exhibit the 𝐽 (𝜋𝜃) value derived from the
test set. Essentially, the values in the table stand for the points our
policy is expected to score per game on average. We observe that

all the RL-based methods can score reasonably high points, among
which the ReLiable with Transformer encoder gives the highest
points. This indicates that the multi-modal representation learning
pipeline indeed helps extract the spatial and temporal dependencies.
Taking a closer look, we can notice that ReLiable outperforms pol-
icy gradient. We attribute this to the Q-learning backbone, which
generally performs better than policy-based algorithms. Generally,
turning the problem into a POMDP and leveraging the auxiliary
sequence encoder (LSTM or Transformer) to approximate the emis-
sion function boost the performance of an RL agent.
5.5 Ablation study

5.5.1 Partially-Observable Markov Decision Process. Next, we fur-
ther show the advantage of formulating the task as a POMDP.
Compared to MDP, optimizing a POMDP enables RL algorithms
to incorporate information beyond one certain state. In our frame-
work, we keep a sliding window of game snapshots at any moment
and encode sequences of sliding windows using Transformer [50]
to approximate the emission function 𝐸 (o𝑡 | s𝑡) in the POMDP.
Tables 2, 3 and 4 show that under different kinds of settings, using
a Transformer encoder to incorporate game snapshots from the
last few seconds generally outperforms merely looking at a single
snapshot by an observable margin. Although the auxiliary informa-
tion brought by the sequence of snapshots does not strictly follow
the Markov property, it equips the model with the capability of
making better decisions by considering continuous game processes.
A single snapshot only reflects relative positions of the on-court
players, the basketball, and the hoops, whereas the sequence of
snapshots contains additional information, such as the player han-
dling the ball, whether a shot attempt is a catch-and-shoot (which
usually reflects a higher success rate), and player movement speeds.
Consequently, feeding sequences of snapshots and encoding them
via a Transformer encoder improves the overall performance.
5.5.2 LSTM vs. Transformer. Besides, we compare the performance
of using different sequence encoders. From Table 4, we can see that
using Transformer as the sequence encoder generally performs
better than using its counterpart LSTM regardless of RL algorithms.
5.6 Case study

We expect offline RL to unearth better policies beyond those present
in the replay data. We therefore investigate cases where the de-
cision made by our policy differs from the replay data to provide
intuition on why our policy performs well on the test data. Figure
5 illustrates 3 different cases where our policy suggests a different
action from the action taken by the teams in the test data. In Figure
5a, Boston player #7, Jared Sullinger, who has an above average
3-point percentage, just caught the ball in an open position. Our
model recommends a 3-point attempt, yet Sullinger chose to pass

3030

ReLiable: Offline Reinforcement Learning for Tactical Strategies in Professional Basketball Games CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

(a) Jered Sullinger gives up an opportu-

nity to shoot a three point.

(b) Kevin Durant shoots over a good de-

fender. The shot turns out a miss.

(c) Boris Diaw with good percentage

gives up shots, instead dribble and pass.

Figure 5: (a, b, c): Cases that demonstrate "surprises" from our policy. This showcases that the offline RL framework can possibly

learn strategies that differ from the existing data that also make sense.

(a) Kobe Bryant tries to shoot over Kevin

Duran, but misses the shot.

(b) Dirk Nowitzki shoots over a good de-

fender. It turns out the shot goes in.

(c) Gordon Hayward makes a buzzer

beater at the end of the 3rd quarter.

Figure 6: (a, b, c): Cases that demonstrate "consistence" from our policy. This indicates that ReLiable imitates some critical

decisions from the successfully plays.

the ball. The Celtics ended with a missed shot as no better open
positions arose later in the possession. In Figure 5b, Oklahoma City
(OKC) is in transition from defense to offense. The shot clock has a
lot of remaining time. OKC player #35, Kevin Durant, dribbled the
ball through the half court. Our model recommends passing the ball,
effectively waiting for teammates to set up their positions. Durant
took a shot and missed. In Figure 5c, our model suggests Boris Diaw
who is a good shooter should take the open shot, while in fact, he
gave up the opportunity. The possession ended up without scoring.

Figure 6 demonstrates some cases that discriminates ReLiable
from its competitors. In 6a, Kobe Bryant shot over Kevin Durant
who is bigger than him. Our model suggests that Kobe should have
not taken the shot, while baseline methods suggest the opposite. It
turns out that Kobe missed the shot. In 6b, Dirk Nowitzki noticed
the shot clock is running out and his team is only leading by 2, so
he decided to shoot the ball despite the double team on him. The
output of our model is consistent with Dirk’s actual behavior, while
baseline methods suggest the opposite. In 6c, Gordon Hayward hit a
buzzer beater at the end of the 3rd quarter. In the first case, ReLiable
successfully avoids a bad shot. In the last two cases, ReLiable is
able to figure the player should take the shot in order to hit a buzzer-
beater, while comparative methods are not able to take the risk.
By looking at these cases, we see that ReLiable is able to discover
some decisions even better than the replay data, achieving the goal
of offline reinforcement learning.

6 CONCLUSION & FUTUREWORK

In this paper, we propose to study basketball tactical strategy learn-
ing with the absence of interaction with the environment. By for-
mulating the basketball games under the context of the partially
observable Markov decision process, we are able to apply a data-
driven approach based on double Q-learning to derive nearly op-
timal strategy out of the raw game replay data. We then present
ReLiable, an offline reinforcement learning framework for learn-
ing effective tactical strategies in basketball games. Experiments
and case studies demonstrate the effectiveness of ReLiable over
comparative methods, as well as the utility of using Transformer to
parameterize the distribution over states under our POMDP setting.

In the future, it is of interest to extend our framework to of-
fline multi-agent reinforcement learning (MARL)[7] setting. Under
the MARL setting, decisions are made in a finer granularity since
each player should make sequential decisions instead of each team.
Compared to single-agent scenarios, multi-agent mode is more
challenging since it involves both collaboration and competition.
Another direction worth exploring is extending the action space to
a hierarchical setting.

ACKNOWLEDGEMENTS

This work was partially supported by the ARO under contract
W911NF1810208; NSF 1829071, 2106859, 2119643; NIHR35-HL135772;
NIBIB R01-EB027650; Amazon; Cisco; and NEC.

3031

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Xiusi Chen et al.

REFERENCES

[1] Baher Abdulhai, Rob Pringle, and Grigoris J Karakoulas. 2003. Reinforcement
learning for true adaptive traffic signal control. Journal of Transportation Engi-
neering 129, 3 (2003), 278–285.

[2] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. 2020. An opti-
mistic perspective on offline reinforcement learning. In International Conference
on Machine Learning. PMLR, 104–114.

[3] Raquel YS Aoki, Renato M Assuncao, and Pedro OS Vaz de Melo. 2017. Luck is
hard to beat: The difficulty of sports prediction. In KDD. 1367–1376.

[4] Karl Johan Åström. 1965. Optimal control of Markov processes with incomplete
state information. JMAA 10, 1 (1965), 174–205.

[5] Bharathan Balaji, Sunil Mallya, Sahika Genc, Saurabh Gupta, Leo Dirac, Vineet
Khare, Gourav Roy, Tao Sun, Yunzhe Tao, Brian Townsend, et al. 2019. Deepracer:
Educational autonomous racing platform for experimentation with sim2real
reinforcement learning. arXiv preprint arXiv:1911.01562 (2019).

[6] Richard Bellman. 1966. Dynamic programming. Science 153, 3731 (1966), 34–37.
[7] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. 2010. Multi-agent re-

inforcement learning: An overview. Innovations in multi-agent systems and
applications-1 (2010), 183–221.

[8] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[9] Tom Decroos, Lotte Bransen, Jan Van Haaren, and Jesse Davis. 2019. Actions
speak louder than goals: Valuing player actions in soccer. In KDD. 1851–1861.

[10] Tom Decroos, Jan Van Haaren, and Jesse Davis. 2018. Automatic discovery of
tactics in spatio-temporal soccer match data. In KDD. 223–232.

[11] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. 2020.
D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219 (2020).

[12] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function ap-
proximation error in actor-critic methods. In ICML. 1587–1596.

[13] Scott Fujimoto, David Meger, and Doina Precup. 2019. Off-policy deep rein-
forcement learning without exploration. In International conference on machine
learning. PMLR, 2052–2062.

[14] A Gasparik, C Gamble, and J Gao. 2018. Safety-first ai for autonomous data centre
cooling and industrial control. DeepMind Blog (2018).

[15] Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David
Sontag, Finale Doshi-Velez, and Leo Anthony Celi. 2019. Guidelines for reinforce-
ment learning in healthcare. Nature medicine 25, 1 (2019), 16–18.

[16] Ammar Haydari and Yasin Yilmaz. 2020. Deep reinforcement learning for intelli-
gent transportation systems: A survey. TITS (2020).

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[18] Sergio J Ibáñez, Jaime Sampaio, Sebastian Feu, Alberto Lorenzo, Miguel A Gómez,
and Enrique Ortega. 2008. Basketball game-related statistics that discriminate
between teams’ season-long success. EJSS 8, 6 (2008), 369–372.

[19] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson,
Agata Lapedriza, Noah Jones, Shixiang Gu, and Rosalind Picard. 2019. Way
off-policy batch deep reinforcement learning of implicit human preferences in
dialog. arXiv preprint arXiv:1907.00456 (2019).

[20] Hangtian Jia, Yujing Hu, Yingfeng Chen, Chunxu Ren, Tangjie Lv, Changjie Fan,
and Chongjie Zhang. 2020. Fever Basketball: A Complex, Flexible, and Asynchro-
nized Sports Game Environment for Multi-agent Reinforcement Learning. arXiv
preprint arXiv:2012.03204 (2020).

[21] Hangtian Jia, Chunxu Ren, Yujing Hu, Yingfeng Chen, Tangjie Lv, Changjie
Fan, Hongyao Tang, and Jianye Hao. 2020. Mastering basketball with deep
reinforcement learning: An integrated curriculum training approach. In AAMAS.
1872–1874.

[22] Junqi Jin, Chengru Song, Han Li, Kun Gai, Jun Wang, and Weinan Zhang. 2018.
Real-time bidding with multi-agent reinforcement learning in display advertising.
In CIKM. 2193–2201.

[23] Gregory Kahn, Pieter Abbeel, and Sergey Levine. 2021. Badgr: An autonomous
self-supervised learning-based navigation system. IEEE Robotics and Automation
Letters 6, 2 (2021), 1312–1319.

[24] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog,
Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,
et al. 2018. Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation. arXiv preprint arXiv:1806.10293 (2018).

[25] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, EthanHolly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al.
2018. Scalable deep reinforcement learning for vision-based robotic manipulation.

In ICRL. 651–673.
[26] Jens Kober, J Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in

robotics: A survey. IJRR 32, 11 (2013), 1238–1274.
[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. NeurIPS 25 (2012), 1097–1105.
[28] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conserva-

tive q-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems 33 (2020), 1179–1191.

[29] Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudík, Yisong Yue, and Hal
Daumé. 2018. Hierarchical imitation and reinforcement learning. In ICML.

[30] Hoang M Le, Peter Carr, Yisong Yue, and Patrick Lucey. 2017. Data-driven
ghosting using deep imitation learning. (2017).

[31] Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. 2017. Coordinated
multi-agent imitation learning. In ICML. 1995–2003.

[32] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline rein-
forcement learning: Tutorial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643 (2020).

[33] Libin Liu and Jessica Hodgins. 2018. Learning basketball dribbling skills using
trajectory optimization and deep reinforcement learning. TOG 37, 4 (2018), 1–14.

[34] Yudong Luo, Oliver Schulte, and Pascal Poupart. 2021. Inverse reinforcement
learning for team sports: valuing actions and players. In IJCAI. 3356–3363.

[35] Avery McIntyre, Joel Brooks, John Guttag, and Jenna Wiens. 2016. Recognizing
and analyzing ball screen defense in the nba. In Proc. of the MIT Sloan Sports
Analytics Conference. 11–12.

[36] Terry LingzeMeng andMatloob Khushi. 2019. Reinforcement learning in financial
markets. Data 4, 3 (2019), 110.

[37] Charbel Merhej, Ryan J Beal, TimMatthews, and Sarvapali Ramchurn. 2021. What
Happened Next? Using Deep Learning to Value Defensive Actions in Football
Event-Data. In KDD. 3394–3403.

[38] Tal Neiman and Yonatan Loewenstein. 2011. Reinforcement learning in profes-
sional basketball players. Nature Comm 2, 1 (2011), 1–8.

[39] John Ashworth Nelder and Robert WMWedderburn. 1972. Generalized linear
models. J. R. Stat. Soc. 135, 3 (1972), 370–384.

[40] Caleb Pagé, Pierre-Michel Bernier, and Maxime Trempe. 2019. Using video
simulations and virtual reality to improve decision-making skills in basketball.
Journal of sports sciences 37, 21 (2019), 2403–2410.

[41] Athanasios S Polydoros and Lazaros Nalpantidis. 2017. Survey of model-based
reinforcement learning: Applications on robotics. JINT 86, 2 (2017), 153–173.

[42] Pieter Robberechts, Jan Van Haaren, and Jesse Davis. 2021. A Bayesian Approach
to In-Game Win Probability in Soccer. In KDD. 3512–3521.

[43] Hector Ruiz, Paul Power, Xinyu Wei, and Patrick Lucey. 2017. " The Leicester
City Fairytale?" Utilizing New Soccer Analytics Tools to Compare Performance
in the 15/16 & 16/17 EPL Seasons. In KDD. 1991–2000.

[44] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. Nature 550,
7676 (2017), 354–359.

[45] Xiangyu Sun, Jack Davis, Oliver Schulte, and Guiliang Liu. 2020. Cracking the
black box: Distilling deep sports analytics. In KDD. 3154–3162.

[46] Zachary Terner and Alexander Franks. 2020. Modeling player and team perfor-
mance in basketball. Annual Review of Statistics and Its Application 8 (2020).

[47] Changjia Tian, Varuna De Silva, Michael Caine, and Steve Swanson. 2020. Use of
machine learning to automate the identification of basketball strategies using
whole team player tracking data. Applied Sciences 10, 1 (2020), 24.

[48] Karl Tuyls, Shayegan Omidshafiei, Paul Muller, ZheWang, Jerome Connor, Daniel
Hennes, Ian Graham, William Spearman, Tim Waskett, Dafydd Steel, et al. 2021.
Game Plan: What AI can do for Football, and What Football can do for AI. JAIR
71 (2021), 41–88.

[49] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In AAAI, Vol. 30.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

[51] Jiaxuan Wang, Ian Fox, Jonathan Skaza, Nick Linck, Satinder Singh, and Jenna
Wiens. 2018. The advantage of doubling: A deep reinforcement learning approach
to studying the double team in the NBA. arXiv preprint arXiv:1803.02940 (2018).

[52] Kuan-Chieh Wang and Richard Zemel. 2016. Classifying NBA offensive plays
using neural networks. In Proc. of MIT Sloan Sports Analytics Conference, Vol. 4.

[53] Chao Yu, Jiming Liu, and Shamim Nemati. 2019. Reinforcement learning in
healthcare: A survey. arXiv preprint arXiv:1908.08796 (2019).

[54] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: A deep reinforcement learning framework
for news recommendation. InWWW. 167–176.

3032

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation and background
	3.2 Problem Formulation

	4 Methodology
	4.1 Making Tactical Decisions on-the-fly with RL framework

	5 Experiments
	5.1 Dataset
	5.2 Experimental setting
	5.3 Baseline Methods
	5.4 Performance Comparison
	5.5 Ablation study
	5.6 Case study

	6 Conclusion & Future work
	References

